

Monoenergetic Proton Beams from Laser Driven Shocks

Dan Haberberger

Neptune Laboratory, Department of Electrical Engineering, UCLA

In collaboration with:

Sergei Tochitsky, Chao Gong, Warren Mori, Chan Joshi Neptune Laboratory, Department of Electrical Engineering, UCLA

> Frederico Fiuza, Luis Silva, Ricardo Fonseca Instituto Superior Technico, Lisbon, Portugal

Outline

- Applications of Laser Driven Ion Acceleration (LDIA) : Hadron cancer therapy
 - Localized energy deposition : Bragg Peak
 - Therapy centers : conventional accelerators vs. lasers
 - Ion source requirements
- Collisionless Shock Wave Acceleration (SWA) of protons
 - 1D OSIRIS Simulations
 - Laser driven case
- UCLA proton acceleration experiment : CO₂ laser and a H₂ gas jet target

- Results : Spectra, emittance
- Interferometry : Plasma density profile
- 2D OSIRIS simulations
 - Modeling the experiment
 - Scaling to higher power lasers
 - Using 1µm laser systems
- Conclusion

Laser Driven Ion Beam Applications

Probing of strong electric fields in dense plasma on the picosecond timescale

- ~1µm resolution, 5-20MeV

- Borghesi, Phys. Plasmas (2002)
- 50µm Ta wire
- Imaging with 6-7MeV protons

VULCAN Laser, 20J, 10¹⁹W/cm²

Picosecond injectors for conventional accelerators

- 1-10MeV, <.004 mm·mrad, <10⁻⁴ eV·s [Cowan, Phys. Rev. Lett. (2004)]

Fast Ignition

- 15-23MeV
- <20ps
- Eff = 10%

Hadron Cancer Therapy

- 250MeV, 10⁹-10¹⁰ protons/s
- $-\Delta E/E \leq 5\%$

Energy Deposition : lons vs. Photons

Bragg Peak for ions results in localized energy deposition

Multi-beam Localization

Simulations of Irradiating the Human Skull

Photon irradiation, 9 fields

 0
 20
 40
 60
 80
 100

Radiation dose relative to peak (100%)

GSI Helmholtz Centre for Heavy Ion Research in Darmstadt <u>http://www.weltderphysik.de/gebiet/leben/tumortherapie/warum-schwerionen/</u>

Uela: Neptune Laboratory

AAC (Jun 2012)

¹²C-ion irradiation, 2 portals

Problem : Cost and Size

Cost : ~200 Million USD

- Accelerator ring (20m)
- Transport magnets
- Complicated Gantry
- Radiation shielding

Only a few in operation along with ~30 small facilites

- 10's of thousands of people treated
- Need more than an order of magnitude more therapy centers

Heidelberg Ion-Beam Therapy Center, Commissioned in 2009

http://www.klinikum.uni-heidelberg.de/Welcome.113005.0.html?&L=1 Meptune Laboratory AAC (Jun 2012)

Solution : Laser Based Accelerators

Goal Cost : 10-20 million USD

Table top laser system (developing) Transportation : Mirrors Only has focusing magnet Gantry : small, protons generated in direction of patient

M. Murakami, et al., AIP Conf. Proc. 1024 (2008) 275, doi:10.1063/1.2958203

Proton Beam Requirements

Radiation Beam Requirements

Laser Driven Ion Acceleration (LDIA)

What is a Shock Wave?

A disturbance that travels at supersonic speeds through a medium

- At supersonic speeds, pressure will build at the front of a disturbance forming a shock
- Characterized by a rapid change in pressure (density and/or temperature) of the medium

In a plasma, a shock wave is characterized by a propagating electric field at speeds useful for ion acceleration ($V_{sh} > 0.01c$)

1D OSIRIS Simulations

In Plasmas, the driver is a potential or electric field

1D Sims : Driven Shocks ($T_e = 511 \text{ keV } C_s = 0.0233 \text{ c}$).

Shock formation in laser driven plasmas

- Linearly polarized laser incident upon an overcritical target creates and heats the plasma
- Ponderomotive force creates density spike and imparts a velocity drift on surface plasma

Denavit PRL 1992, Silva PRL 2004

llela Neptune Laboratory

F. Fiuza | Prague, April 20 | SPIE 2011

CO₂ Laser Interacting with a Gas Jet Target

llela Neptune Laboratory

Gas jet target advantages for Shock Wave Acceleration (SWA)

- Gas jets can be operated at or above 10¹⁹ cm⁻³ (n_{cr} for 10μm)
- Long scale length plasma on the back side of the gas jet inhibits strong TNSA fields preserving proton spectrum
- High repetition rate source
- Clean source of ions (H₂, He, N₂, O₂, Ar, etc...)
- Low plasma densities allows for probing of plasma dynamics using visible wavelengths

D. Haberberger et al., Opt. Exp. 18, 17865 (2010)

CR-39 Proton Detection

CO₂ Laser Produced Proton Spectra

Uela Neptune Laboratory

Emittance Estimation

Uela: Neptune Laboratory

Plasma Density Profile

Observations

- 1. Strong profile modification on the front side of the plasma : hole boring
- 2. Sharp rise (10λ) to overcritical plasma where laser pulse is stopped
- Long (1/e 30λ) exponential plasma tail

Uela: Neptune Laboratory

2D OSIRIS Simulations : Input Deck

Initial Plasma Profile

2D OSIRIS Simulations : Results

2D Simulations : Energy Scaling

Proposed Shock Wave Acceleration at $1\mu m$

Uela: Neptune Laboratory

Conclusions

Laser-driven, electrostatic, collisionless shocks in overdense plasmas produce monoenergetic protons at high energies

- Protons accelerated to 15-22 MeV (at I_L ~ 4x10¹⁶ W/cm²)
- Energy spreads as low as 1% (FWHM)
- Emittances as low as 2x4 mm·mrad
- Interferometry uncovers unique plasma profile
- Plasma simulations elucidate shock wave acceleration of protons through the backside of the plasma

Step towards achieving 200-300 MeV protons needed for cancer therapy

- Simulations show scaling to ~300 MeV with a laser a_o = 15
- Proposed method of exploding foil target for 1µm laser systems

Uda Neptune Laboratory